Garag76.ru

Авто Тюнинг
4 просмотров
Рейтинг статьи

Система автоматизированного управления буровой установки

Система автоматизированного управления буровой установки

субн1

Система управления применяется в составе мобильных и стационарных буровых установок и служит для автоматизированного управления приводами буровых насосов с заданной частой вращения, а также для управления вспомогательными электродвигателями насосной установки.

Автоматизированная системы управления блоком насосным (АСУ БН) выполняет следующие функции:

  • автоматический запуск (в том числе под нагрузкой) и остановка оборудования (в том числе систем смазки и орошения штоков) МН по соответствующим алгоритмам;
  • автоматического отключения по соответствующим алгоритмам оборудования МН в аварийных ситуациях, определение первопричины аварийной ситуации и выдач соответствующего сообщения на панель оператора;
  • выдачи управляющих воздействий на преобразователь частоты электропривода бурового насоса;
  • автоматическое поддержание заданного давления в нагнетательной линии путем изменения оборотов главного двигателя;
  • включения/выключения отопления и освещения модуля АСУ БН;
  • архивацию параметров работы модуля АСУ БН (в том числе систем смазки и орошения штоков) с возможностью отображения в функции от времени;
  • обводную, аварийную схему управления бурового насоса, «аварийный режим» от специального ключа.
  • аналитический расчет числа двойных ходов в минуту.
  • Самодиагностика исправности АСУ
  • Учет времени наработки основного оборудования и потребляемой электроэнергии.

Комплектность системы управления

Привод насоса без электродвигателя (рама, подшипниковые опоры, муфта, ведущий шкив, натяжное устройство)

Контейнер утепленный 3200х3200х12000мм с системой климат-контроля, пожарной сигнализации, освещения, с панелями разъемов

Сухой трансформатор 2500 кВА, 6/0,69/0,69 кВ

Частотно-регулируемый привод с выключателем и предохранителями

Шкаф управления буровыми насосами с аппаратурой для управления вспомогательным электрооборудованием насосов U=0,4 кВ (МСС), на базе контроллера (на выбор) с программируемым терминалом

Пульт управления бурового насоса

Выносной пульт управления на посту бурильщика (взрывозащищенный)

Комплект поверенных датчиков

Комплект кабельной продукции с герметичными разъемами быстрого соединения

Комплект эксплуатационной и разрешительной документации

Схема

Системы управления буровыми насосами могут изготавливаться для приводов буровых насосов серии УНБ-600(А), УНБТ-950, УНБТ-1180, а также насосов серии F 800 — F 1600.

Комплекс управления спроектирован и изготовлен для работы в условиях крайнего севера. Климатическое исполнение «У» категории размещения 3 по ГОСТ 15150-69 (температурный диапазон от — 40°C до + 45°С) на месторождениях с содержанием сероводорода до 6%. Температура хранения – — 60 + 55°С.

Технические характеристики электропривода:

  • Мощность: 1000-1400 кВт
  • Режим работы: длительный, без перегрузок
  • Электродвигатель: тип – асинхронный с КЗ ротором; 1000 – 1400 кВт, 690 В, 810/2200 об/мин, номинальный ток 1080 А
  • Диапазон регулирования скорости двигателя: 0 — 1000 об/мин

Управление электроприводом буровых насосов может производиться:

  • с пульта управления насосами;
  • с пульта бурильщика с использованием автоматизированной микропроцессорной системы управления;
  • вручную с двери приводного блока из контейнера КТУ.

При разработке системы управления использован принцип модульности и взаимозаменяемости элементов системы. Восстановление работоспособности системы при отказах производится, как правило, путем замены элементов на аналогичные из комплекта ЗИП. Такой принцип построения системы позволяет повысить ее ремонтопригодность, надежность и безотказность.

Автоматизация процесса бурения

По имеющимся данным, созданием систем автоматизированного управления процессом бурения в последнее время занимаются также зарубежные фирмы.

Японская фирма “Кокэн Боринг Машин Ко” разрабатывает буровые станки с компьютерным управлением с 1979 г. Например, в 1981 г. был разработан буровой станок СВК-К-10А с программным управлением. Эта модель представляет собой малогабаритный гидравлический станок со встроенной микро-ЭВМ, который предназначен для геологической съемки и бурения цементировочных скважин глубиной до 100 м при постройке дамб и плотин. Разработчики обоснованно считают, что эффективность и безопасность бурения значительно зависят от квалификации оператора-бурильщика. Поэтому цель разработки бурового станка со встроенной ЭВМ состоит в обеспечении высокой надежности, эффективности и безопасности работы при бурении станком независимо от квалификации бурильщика и, тем более, в открытии возможности автоматического бурения станком скважины заданной глубины в неизвестных горно-геологических условиях. Система управления собирает информацию по шести параметрам и по заданной программе производит оптимальное управление станком спускоподъемные операции также автоматизированы. Специалисты фирмы утверждают, что применение станков с программным управлением позволило получить большой экономический эффект.

В ФРГ в 1989 г. приступили к оптимизации процессов бурения на основе микроэлектроники при разработке рудных месторождений скважинами большого диаметра. Начатые научно-исследовательские опытно-конструкторские работы показывают, что их результаты могут быть использованы и при других видах бурения.

Авторы считают, что автоматическое регулирование при бурении скважин большого диаметра позволяет:

повысить скорость бурения при снижении удельного износа потребления энергии;

создать условия для обслуживания бурового станка одним челове­ком, обслуживания одной бригадой нескольких станков;

сократить непроизводительное время в начале и конце смены;

максимально увеличить скорость бурения при минимизации затрат.

В разработке предусматривается диагностика бурового станка, ре­гистрация и индикация параметров режимов бурения и некоторых режимов работы. Оптимизацию процесса бурения намечено осуще­ствить путем адаптивного регулирования с помощью вычисли­тельных устройств.

В обзоре, посвященном анализу состояния разведочного бурения и направления его развития, зарубежные специалисты утверждают, что дальнейшее развитие этого способа, вероятно, приведет к повышению| производительности, автоматизации бурового процесса с целью сокращения времени на спускоподъемные операции и обеспечения адаптивного регулирования параметров бурения с поиском оптимальных сочетаний скорости подачи, осевой нагрузки, крутящего момента и частоты вращения бурильной колонны [12]. В Специальном проектно-конструкторском бюро буровой автоматики (СПКББА) на базе ЭВМ среднего класса разработана станция автоматической оптимизации и геолого-технологического контроля бурения глубоких скважин (САОБ), предназначенная для оперативного управления про­цессом бурения с целью его оптимизации, распознавания и предупреж­дения осложнений и аварийных ситуаций, ликвидации аварий, автома­тического сбора, обработки, накопления и выдачи геолого-технологи­ческой и технико-экономической информации о процессе бурения глу­боких скважин на нефть и газ.

Основные функции станции следующие: оптимизация режимов бу­рения, обеспечивающих достижение экстремального значения критерия оптимальности (максимум рейсовой скорости или проходки на долото, минимум стоимость 1 м проходки); корректировка выбранного опти­мального режима бурения при изменении условий бурения в процессе рейса; распознавание на ранней стадии предаварийных и аварийных ситуаций и вероятностная оценка момента их наступления; накопление, хранение и представление в различной форме геолого-технологической информации о процессе бурения, кратной 1 м бурения или рейсу.

Станция может работать с любыми нефтяными буровыми уста­новками, укомплектованными необходимым набором технологических датчиков и рассчитанными на бурение эксплуатационных и поисково-разведочных скважин на нефть и газ глубиной 4000-6500 м. В первую очередь целесообразно использовать станцию на новых площадях в ус­ловиях малой изученности разрезов и недостоверности сходной геоло­го-технологической информации об условиях бурения.

Вторая наиболее значительная разработка, имеющая реальный вы­ход в производство, автоматическая система управления процессом углубки скважины в оптимальном режиме (автобурильщик “Узбекистан 2А”), созданная в Методической экспедиции геолого-экономи­ческих исследований. Система включает кабину бурильщика с размещенным в ней вычислительно-управляющим комплексом, датчики технологических параметров и исполнительный механизм для управления рычагом тор­моза лебедки. Система предназначена для ведения в автоматическом режиме процесса бурения роторным и турбинным способами глубоких скважин на нефть и газ серийными буровыми установками с использо­ванием шарошечных долот. Систему обслуживает один оператор. Вы­числительно-управляющий комплекс включает в себя вычислительный блок, выполненный на базе серийной микроЭВМ “Электроника С5-12”, пульт управления, устройства связи с объектом и оператором, пред­ставления информации, формирования управляющих сигналов, ленточ­ный перфоратор ПЛ-150 и систему питания. Комплекс предназначен для приема и анализа информации о процессе бурения по сигналам датчиков технологических параметров, а также для логической и математической обработки ее в соответствии с алгоритмом управления, формирования информационных и управляющих сигналов и обеспечения всех устройств системы электропитания.

В соответствии с алгоритмом управления система производит взвешивание бурового инструмента, приработку долота, поиск эффективного значения осевой нагрузки на долото и поддержание ее в процессе бурения. Если дальнейшее бурение экономически нецелесообразно, то система вырабатывает сигнал об окончании рейса и прекращает подачу инструмента. Кроме того, система обеспечивает безаварийное бурение, своевременно определяя износ опоры шарошечного долота. Сведения о ходе процесса бурения и режимах работы оборудования выдаются бурильщику с помощью стрелочных приборов, цифровой индикации, светящихся транспарантов, а также фиксируются на перфоленте, кото­рая может быть исходным документом для формирования информационного банка и служит контрольным документом, объективно представляющим состояние бурового инструмента и оборудования и отображающим работу буровой бригады.

Система предназначена для бурения скважин глубиной 3500-4000 м. Потребляемая мощность не более 0,5 кВт. Как показали результаты промысловых испытаний, применение системы позволяет сократить расход долот и время проводки скважины на 15-20% при обеспечении полной безаварийности.

Фирмой “Даймэнт Боарт” создана гидрофицированная установка с подвижным вращателем и трубодержателем, в управлении которой использован микропроцессор [13]. С помощью микропроцессора коор­динируется функционирование элементов гидроуправления, выполняют­ся расчеты различных операций и контролируется их соответствие предварительно принятым заданиям. При спускоподъемных операциях микропроцессор синхронизирует последовательность срабатывания гидропатрона вращателя и трубодержателя, перемещение вверх и вниз и контролирует интервалы времени между прохождением последовательных сигналов.

Возможно расширение функций системы управления: полное воспроизведение различных программ, заранее отработанных экспериментально; защита по максимальному крутящему моменту при свинчивании и развинчивании бурильных труб; ограничение по предель­ной осевой нагрузке во время бурения, что повышает надежность бурильной колонны и т. д. Предусматриваются регистрация и обработка информации о процессе бурения, которая затем будет использована для интерпретации этого процесса и геологического разреза.

Для бурения геологоразведочных скважин на твердые полезные ископаемые разработана система автоматизированной оптимизации управления технологическим процессом бурения САОПБ-1. Система предназначена для автоматического управления технологическим про­цессом бурения скважин алмазным породоразрушающим инструментом по заданной оптимальной углубке коронки за оборот или заданной механической скорости и может применяться на всех буровых станках с гидравлической системой подачи, используемых при алмазном бу­рении.

Практически система представляет собой аналоговый регулятор и отличается от известных высокой надежностью и эффективностью, которые зависят от правильного выбора в каждом конкретном случае углубки коронки за оборот, задаваемой бурильщиком (технологом). При несоответствии заданной углубки (скорости бурения) условиям бурения, т.е. в случае превышения заданной скорости бурения, опти­мальной для данных условий, срабатывает защита по потребляемой мощности или давлению бурового раствора в нагнетательной линии промывочного насоса и происходит автоматический “подрыв” инстру­мента. Частое повторение описанной ситуации служит сигналом о не­обходимости уменьшения заданной углубки за оборот.

Оптимальные величины задаваемой углубки за оборот для каждой системы (горная порода-коронка) выбирают по специальной, ранее разработанной, диаграмме либо определяют опытным путем по специальной методике в процессе бурения.

Безусловной заслугой разработчиков является то, что они первыми на базе большого объема бурения доказали преимущества автоматизи­рованного управления процессом алмазного бурения.

Недостаток системы — ограниченная способность к совершенствова­нию, что присуще всем аналоговым решениям. Введение элементов адаптации, совершенствование алгоритмов управления повлечет за со­бой большие трудности и, следовательно, удорожание системы.

В начале 1999 г. Московское специальное конструкторское бюро геофизического приборостроения и информатики " Ореол " выпустила систему технологического контроля параметров бурения "СГТ-микро". Система рекомендована Госгортехнадзором РФ для внедрения во всех буровых предприятиях, в первую очередь, как оборудование для обеспечения безопасности ведения буровых работ и предотвращения аварий.

Система "СГТ-микро" по функциональным возможностям аналогична подобным средствам, выпускаемым известной фирмой "Мартин-Декер". Стоимость "СГТ-микро" в 4-6 раз меньше, а с учетом затрат на обучение персонала, профилактические обслуживание и ремонт, вызов специалистов при возникновении нештатных ситуаций и т. п., стоимостное отношение еще более возрастает в пользу "СГТ-микро".

Глава 3. Описание устройства сбора и первичной обработки информации о состоянии процесса бурения

По-русски — телеметрия, по-английски — MWD

Наклонно-направленное бурение давно стало основным видом бурения как на суше, так и на море при бурении скважин с платформ различных типов. Одновременно с развитием наклонно-направленного бурения существует тенденция повышения требований к точности попадания забоя скважин в заданную точку и к соблюдению проектного профиля скважины. В связи с этим возникает необходимость обеспечения эффективного контроля пространственного положения ствола скважины. При бурении наклонно-направленных скважин применяется комплекс маркшейдерских работ, включающий специальное оборудование, инструмент, приборы, особые технологические приемы, и связанный как с заданием направления ствола скважины, так и с постоянным контролем за положением оси ствола скважины в пространстве. Последнее является задачей инклинометрии.

Создание телеметрических систем контроля за положением отклоните-ля, забойными параметрами ствола скважины в процессе бурения (включая устройства управления режимами бурения) придало значительный импульс научно-техническому прогрессу в области бурения скважин на нефть и газ. В настоящее время телеметрические системы контроля в сочетании с методико-математичес-ким и программным обеспечением дали технологам небывалые возможности, в корне изменив методы их работы.

Азбука телеметрических систем

В общем случае телеметрические системы осуществляют измерение первичной скважинной информации, ее передачу по каналу связи забой — устье, прием наземным устройством, обработку и представление оператору результатов обработки. Существующие телесистемы включают следующие основные части:

  • забойную аппаратуру;
  • наземную аппаратуру;
  • канал связи;
  • технологическую оснастку (для электропроводной линии связи);
  • антенну и принадлежности к ней (для электромагнитной линии связи);
  • немагнитную УБТ (для телесистем с первичными преобразователями азимута с использованием магнитометров);
  • забойный источник электрической энергии (для телесистем с беспроводной линией связи).

Забойная часть телесистемы включает первичные преобразователи измеряемых параметров, таких как:

  • первичные преобразователи (ПП) направления бурения;
  • ПП геофизических параметров приствольной зоны скважины;
  • ПП технологических параметров бурения.

К первичным преобразователям направления бурения относятся:

  • ПП зенитного угла в точке измерения (а);
  • ПП азимута скважины (j);
  • ПП направления отклонителя (у). К первичным преобразователям
  • геофизических параметров (данных каротажа) можно отнести геофизические зонды, измеряющие:
  • КС — кажущееся сопротивление горных пород;
  • ПС — самопроизвольную поляризацию;
  • гамма-каротаж (гамма естественного излучения горных пород);
  • электромагнитный каротаж.
  • К первичным преобразователям технологических параметров бурения можно отнести датчики, измеряющие параметры процесса бурения:
  • осевую нагрузку на долото (G);
  • момент (М) реактивный или активный;
  • частоту вращения (n) долота;
  • давление внутри и снаружи бурильной колонны;
  • другие, по желанию заказчика, а также в зависисмости от аппаратурных возможностей телесистемы.

Данные от первичных преобразователей через коммутатор поступают на аналого-цифровой преобразователь (АЦП), затем через кодирующее устройство (КУ), усилитель-передатчик поступают в канал связи. На поверхности закодированная различными способами информация расшифровывается в обратном порядке и поступает на системы отображения и обработки для принятия решений по технологическому режиму.

Каналы связи

На протяжении многих лет основным препятствием для практического использования измерений в процессе бурения был канал связи. Он является основным и решающим фактором, так как именно от него зависит конструкция телесистем, компоновка, информативность, надежность, удобство работы, а также условия прохождения сигналов.

Диапазон существующих в настоящее время каналов весьма широк, и представлен гидравлическим, электромагнитным, акустическим, электропроводным и многими другими типами каналов связи (РИС. 1).

В результате многолетних исследований и практического использования в реальных условиях бурения широкое применение нашли три канала связи:

  • электропроводный;
  • гидравлический;
  • электромагнитный.

У каждого из этих каналов связи имеются свои преимущества и недостатки. Разнообразие условий бурения, а также экономическая целесообразность определяют каждому каналу связи свою область применения. Остановимся подробнее на преимуществах и недостатках каждого из рассматриваемых каналов связи.

Электропроводной канал связи (ЭКС)

ЭКС в России в силу многих причин нашел значительное, но недостаточное применение. Этот канал обладает преимуществом перед всеми известными каналами связи — это максимально возможная информативность, быстродействие, многоканальность, помехоустойчивость, надежность связи; отсутствие забойного источника электрической энергии и мощного передатчика; возможность двусторонней связи; не требует затрат гидравлической энергии; может быть использован при работе с продувкой воздухом и с использованием аэрированной промывочной жидкости. К недостаткам электропроводного канала связи относятся наличие кабеля в бурильной колонне и за ней, что создает трудности при бурении; затраты времени на его прокладку; необходимость защиты кабеля от механических повреждений; невозможность вращения колонны (неактуально при применении токосъемника, устанавливаемого под вертлюгом); невозможность закрытия превентора при нахождении кабеля за колонной бурильных труб; необходимость доставки (продавки) забойного модуля или контактной муфты до места стыковки (посадки) при зенитных углах более 60° с помощью прода-вочного устройства (имеются варианты проложения кабеля внутри труб через вертлюг).

Гидравлический канал связи (ГКС)

Телесистемы с ГКС отличаются от других наличием в них устройства, создающего в потоке бурового раствора импульсы давления. Для генерирования импульсов давления в буровом растворе используются несколько различных по типу устройств. Сигнал, создаваемый ими, подразделяется на три вида: положительный импульс, отрицательный импульс или непрерывная волна (РИС. 2).

Положительные импульсы генерируются путем создания кратковременного частичного перекрытия нисходящего потока бурового раствора. Отрицательные — путем кратковременных перепусков части жидкости в затрубное пространство через боковой клапан. Гидравлические сигналы, близкие к гармоническим, создаются с помощью электродвигателя, который вращает клапан пульсатора. Гидравлические импульсы со скоростью около 1250 м/с поступают по столбу бурового раствора на поверхность, где закодированная различными способами информация декодируется и отображается в виде, приемлемом для восприятия оператором.

Предпочтение в применении телесистем с ГКС базируется как на относительной простоте осуществления связи по сравнению с другими каналами связи, так и на том, что этот канал не нарушает (по сравнению с ЭКС) технологические операции при бурении и не зависит от геологического разреза (по сравнению с ЭМКС). Недостатки данного канала связи — низкая информативность из-за относительно низкой скорости передачи, низкая помехоустойчивость, последовательность в передаче информации, необходимость в источнике электрической энергии (батарея, турбогенератор), отбор гидравлической энергии для работы передатчика и турбогенератора, невозможность работы с продувкой воздухом и аэрированными жидкостями.

Электромагнитный канал связи (ЭМКС)

Системы с ЭМКС используют электромагнитные волны (токи растекания) между изолированным участком колонны бурильных труб и породой. На поверхности земли сигнал принимается как разность потенциалов от растекания тока по горной породе между бурильной колонной и приемной антенной, устанавливаемой в грунт на определенном расстоянии от буровой установки (РИС. 3).

К преимуществам ЭМКС относится несколько более высокая информативность по сравнению с гидравлическим каналом связи. К недостаткам — дальность связи, зависящая от проводимости и перемежаемости горных пород, слабая помехоустойчивость, сложность установки антенны в труднодоступных местах.
В ТАБЛ. 1 приводятся сравнительные характеристики телеметрических систем российских и зарубежных производителей с каналами связи различных типов.

Учитывая недостатки применяемых каналов связи, необходимо их совершенствовать, а также разрабатывать новые каналы, так как разнообразные горно-геологические условия, различные технико-технологические аспекты проводки скважин и экономические факторы предъявляют более высокие требования к информативности процесса бурения.

Представляет интерес возможность использования комбинированного канала связи. Суть этого вида связи заключается в использовании нескольких каналов связи одновременно — как вариант, это могут быть гидравлический, электромагнитный, механический и частично электропроводный, например, как ретранслятор. Для реализации этого вида связи в телеметрической системе устанавливаются гидравлический пульсатор и электромагнитный передатчик. Информация принимается на поверхности обычным способом для этих каналов связи. По механическому каналу связи принимается информация по вибрации долота. Электропроводной канал может быть использован для частичного погружения в колонну бурильных труб или за трубами для приема и ретрансляции ослабленных информационных сигналов от телеметрической системы при больших глубинах. Применение комбинированного канала связи позволит частично решить многолетние споры о перспективности дальнейшего использования того или иного канала связи забой — устье.

По пути усложнения

Одним из важных достижений в области совершенствования телеметрических систем являются модульные системы. Рассчитанные на максимальную эффективность и гибкость, эти системы более дешевы и экономичны по сравнению с любыми другими. Все оборудование такой системы имеет модульную конструкцию с полной совместимостью модулей, что дает возможность приобретать его в любом наборе, в виде отдельных секций или полным комплектом. Использование подобных систем помимо контроля навигационных и технологических параметров позволяет частично проводить комплекс геофизических исследований без остановки процесса бурения (технология logging while drilling (LWD) — геофизические исследования в процессе бурения). В частности, с помощью систем подобного типа можно осуществлять контроль за следующими параметрами:

  • естественное гамма-излучение разбуриваемых горных пород;
  • кажущееся сопротивление горных пород КС;
  • сопротивление поляризации ПС;
  • электромагнитный каротаж;
  • гамма-гамма каротаж;
  • нейтронно-нейронный каротаж;
  • акустический каротаж;
  • кавернометрия;
  • виброметрия.

Однако при современном уровне развития техники и технологий бурения информация о характеристиках пласта, получаемая в процессе бурения, является недостаточной. Необходимо иметь данные о кровле и подошве пласта, информацию о разрезе впереди долота, а также информацию о приближении к соседним скважинам, что особенно важно при разбу-ривании морских месторождений, где количество скважин, построенных относительно близко друг от друга, достигает нескольких десятков.

Усложнение процесса бурения стимулирует дальнейшее развитие разработок телеметрических систем. Основными направлениями совершенствования являются: увеличение количества измеряемых и передаваемых на поверхность параметров бурения, скорости передачи информации; создание в забойных устройствах автоматов, самостоятельно управляющих процессом проводки скважин (управляемый отклонитель, прибор корректирования нагрузки на долото и др. механизмы); использование двухсторонней связи забой — устье. Существенное повышение точности и качества проводки высокотехнологичных скважин невозможно без совершенствования наземного бурового комплекса, способного автономно или при минимальном вмешательстве оператора осуществлять бурение в продуктивном пласте с учетом особенностей его фактического строения. Создание интеллектуально-автоматизированной буровой установки, которая будет контролировать и корректировать работу бурильщика, а в некоторых случаях — осуществлять бурение скважины или выполнение определенных операций в автоматическом режиме, является одним из приоритетных направлений зарубежных и отечественных производителей бурового оборудования.

Принципиальная блок-схема комплекса автоматического управления бурением скважины представлена на РИС. 4.

Система включает два комплекса параметров: забойные (телеметрическая система) и наземные (система контроля наземных параметров бурения). Возможности забойной части системы по сбору и первичному преобразованию данных подробно описаны выше. Система наземного контроля может быть представлена станцией геолого-технического контроля.

Основными задачами системы автоматизированного управления проводкой скважины являются:

  • измерение траекторных и режимных параметров бурения на забое скважины;
  • передача информации к наземной аппаратуре;
  • измерение и регистрация наземных параметров режима бурения и работы бурового оборудования;
  • обработка данных измерения;
  • формирование информации о траекторных и технологических параметрах бурения;
  • выдача рекомендаций по дальнейшей проводке ствола скважин;
  • предупреждение об осложнениях и аварийных ситуациях;
  • обеспечение заданных бурильщиком режимных и траекторных параметров в автоматическом режиме;
  • формирование банка данных.

Система автоматизированного управления проводкой наклонных и горизонтальных скважин позволит повысить качество строительства скважин, точность выполнения проектов, исключить субъективные ошибки персонала буровой установки даже при среднем уровне его квалификации, что даст существенную экономию при строительстве скважин.

Описание автоматизированной системы управления процессом бурения Зоя 1.1

4.1 Описание автоматизированной системы управления процессом бурения Зоя 1.1.

Система Зоя 1.1 предназначена для контроля технологических параметров бурения с целью оперативного управления и оптимизации режимов бурения скважин на нефть и газ и обеспечивает:

· автоматический сбор и обработку с расчетом производных параметров и представление текущей информации в наглядной форме на средствах отображения и регистрации бурильщика и бурового мастера;

· документирование результатов бурения в цифро-аналоговом и графическом виде, включая рапорт за смену,

· контроль выхода технологических параметров за установленные пользователем пределы со световой и звуковой сигнализацией этих событий;

· аварийную сигнализацию при выходе параметров «Вес на крюке», «Давление на входе» за предельные значения с выдачей сигналов блокировки на соответствующее буровое оборудование;

· автономное функционирование пульта бурильщика при отключении ЭВМ;

· высокую эксплуатационную надежность и долговечность при минимальных затратах на техническое обслуживание и метрологическое обеспечение.

К необходимому типовому элементу любой системы автоматического управления относятся датчики технологических параметров. Назначение датчика — преобразование контролируемой или регулируемой величины в величину другого рода, удобную для дальнейшего применения.

В системе присутствуют следующие датчики:

· Датчик веса на крюке устанавливается на неподвижной ветви талевого каната. В качестве первичного преобразователя в датчике используется тензометрический силоизмерительный элемент.

· Датчик контроля момента на роторе (тензометрический) устанавливается на редукторе привода ротора вместо фиксирующей серьги-стяжки или фиксирующей опоры. Контролируется действующее на датчик усилие растяжения или сжатия.

· Датчик контроля ходов насоса (индуктивный датчик приближения) устанавливается на шкиве привода насоса.

· Датчик канала контроля скорости вращения ротора определяет скорость вращения вала привода ротора. В качестве первичного преобразователя применяется датчик приближения. Устанавливается на трансмиссии.

· Датчик давления (тензорезисторный) устанавливается в нагнетательной линии.

· Датчик глубин дает исходную информацию для расчета глубины забоя, подачи, положения тальблока. Датчик цепной передачей связан с валом лебедки.

· Датчик-индикатор изменения расхода бурового раствора на выходе (в желобе) преобразует угол отклонения лопатки от вертикального положения в электрический сигнал в зависимости от уровня и скорости потока.

· В совмещенном датчике плотности — уровня бурового раствора (БР) и плотности БР на выходе в качестве первичного преобразователя применяется дифференциальный манометр. Измеряется гидростатическое давление в погруженных в буровой раствор трубках, через которые под давлением продувается воздух.

· Датчик суммарного содержания горючих газов, выполненный на основе первичного термохимического преобразователя, монтируется вместе с датчиком-индикатором изменения расхода на выходе. Аналогичные датчики применяются для контроля газосодержания и сигнализации во взрывоопасной зоне.

· Датчик температуры БР на входе и выходе выполнен на основе специальной микросхемы и устанавливается, соответственно, в рабочей емкости и в желобе.

· Датчик температуры воздуха (аналогичный) размещен в кабельной распределительной коробке.

· Датчик момента на ключе (тензометрический) устанавливается на приводном тросе ключа.

· Датчик момента на турбобуре (тензометрический) устанавливается на узел стопора ротора.

Информация от датчиков по кабелям передается в блок УКП, где осуществляется преобразование и обработка сигналов, и, затем, в пуль бурильщика и ЭВМ.

Информационно-метрологические характеристики в полном объеме приведены в прилагаемой таблице №.

0 — 5000; 0 — 4000

0 — 3000; 0 — 2500

4.2 Место УСО в АСУ процесса бурения

АСУ ТП должна иметь возможность и средства связи с объектом управления. Однако из главных различий между системами обработки данных и АСУ ТП состоит в том, что последняя должна быть способна в реальном времени получать информацию о состоянии объекта управления, реагировать на эту информацию и осуществлять автома­тическое управление ходом технологического процесса. Для решения этих задач ЭВМ, на базе которой строится АСУ ТП, должна относиться к классу управляющих вычислительных машин (УВС), т. е. представлять собой управляющий вычислительный комплекс (УВК) УВК можно определить как вычислительную машину, ориентированную на автоматический прием и обработку информации, поступающей в про­цессе управления, и выдачу управляющих воздействий непосредственно на исполнительные органы технологического оборудования. Такая ори­ентация обеспечивается устройствами связи с объектом (УСО) (рис. ммм) — набором специализированных блоков для информационного обмена между уп­равляющей ЭВМ и объектом управления. Различают пассивные и ак­тивные УСО.

Пассивные устройства выполняют команды опроса датчиков и команды выдачи управляющих воздействий. Они содержат комплекты входных и выходных блоков и блок управления. В состав входных и выходных блоков, обеспечивающих прием аналоговой и дискретной информации, входят преобразователи формы информации типа аналог-код и код-аналог, коммутаторы, усилители и т. п. Блок управления обеспечивает необходимый обмен информацией с управляющей ЭВМ и управление всеми блоками устройства, расшифровывает команды, поступающие от ЭВМ, и обеспечивает необходимый обмен информацией через блоки ввода-вывода

Активные УСО способны работать в автономном режиме слежения за состоянием управляемого объекта (процесса), а также выполняют определенные алгоритмы преобразования информации, например, алгоритмы регистрации параметров и сигнализации об отклонении их от нормы, регулирования по одному из относительно простых законов и др. Построение УСО по активному принципу позволяет повысить надежность АСУ ТП в целом и эффективность использования управляющей вычислительной машины в результате сокращения потока информации, поступающей от объекта управления в управляющую ЭВМ.

Рис. Типовая структура АСУ ТП на базе управляющей ЭВМ.

В настоящем дипломе разрабатывается конструкция функционально законченного устройства связи с объектом в системе сбора и первичной обработки информации о состоянии процесса бурения (рис.ццц). Система сбора и первичной обработки информации о состоянии процесса бурения является важнейшей функциональной подсистемой АСУ ТП ЗОЯ.

В основном схема разработана на интегральных микросхемах ТТЛ серии К555 и К155. Данная модель является практичной, недорогой и простой и позволяет связать датчик любого типа с IBM PC или эквивалентным компьютером. Подробно рассматриваются принципы функционирования системной шины IBM PC и базовый аппаратный интерфейс, с которым связана вышеуказанная конструкция, а также работа системы прерываний, счетчиков и таймеров.

голоса
Рейтинг статьи
Adblock
detector
Для любых предложений по сайту: [email protected]