Блок управления вентилятором охлаждения
Блок управления вентилятором охлаждения
Это устройство разрабтатывалось для контроля температуры двигателя и управления муфтой вентилятора охлаждения и подогревателем впускного коллектора, в автомобиле Мерседес 190. Схема устройства показана на рисунке и представляет из себя обычный термометр на датчике DS18B20 и микроконтроллере PIC16F628A. Устройство измеряет температуру двигателя, отображает ее на экране и в зависимости от нее включает исполнительные устройства.
* На схеме не указано — VD3 — КС522
Измеренная температура двигателя отображается в диапазоне от 0 до 99 градусов. Если температура ниже нуля градусов, то на дисплее высвечивается Lo (низкая), а когда больше 99 градусов — высвечивается Hi (высокая). Хотя предел индикации 99 градусов, термометр все равно продолжает измерять температуру. Как только температура дойдет до 110 градусов (что для двигателя мерседеса считается нормально, он не кипит при такой температуре) — то на дисплее будет высвечено Ot (перегрев). А на выходе RA4 микроконтроллера появляется сигнал логического 0 — ошибка, этот сигнал можно использовать для включения светодиода в салоне, или для управления бипером. Сигнал на RA4 будет сброшен только после выключения зажигания, снижение температуры двигателя никакого влияния на этот сигнал уже не окажет. При температуре ниже 40 градусов будет включен подогреватель впускного коллектора. Аналогично при температуре 89 градусов будет включен вентилятор охлаждения. Чтобы снизить нагрузку на аккумулятор, устройство имеет вход который соединяется с реле стартера. Когда включен стартер, не зависимо от температуры двигателя, выключаются вентилятор и подогреватель, как только стартер будет выключен, ветилятор и подогреватель включаться согласно измеренной температуры.
Сам термометр-термостат собран на печатной плате и размещен в пластиковом корпусе. Корпус закреплен двумя саморезами прямо в моторном отсеке. Размещать прибор нужно так, чтобы он был максимально удален от высоковольтных проводов зажигания и других силовых проводов, а также как можно дальше от горячих деталей двигателя. Очень желательно применить микроконтроллер в расширенном температурным исполнением — PIC16F628A-E/P, но можно и в промышленном — PIC16F628A-I/P. Плата разработана под сдвоенный светодиодный индикатор фирмы Bright LED — BD-A816RD. По большому счету индикатор в этом устройстве и не нужен, но я его установил, чтобы не было устройство совсем простым, а так же, чтобы прямо под капотом можно увидеть температуру двигателя. Микросхемный стабилизатор 7805 нужно установить на малогабаритный радиатор — полоску алюминия. Электролитические конденсаторы нужно выбирать из морозостойких экземпляров.
Для изготовления самого датчика температуры понадобилась болванка из латуни, из нее был выточен корпус для датчика DS18B20. Этот корпус изготовлен так, чтобы он легко вкручивался на место одного из штатных датчиков (они к сожалению благополучно умерли , поэтому и пришлось разработать это устройство). Корпус желательно сделать максимально облегченным, чтобы уменьшить его температурную инерцию. Соединять датчик с платой микроконтроллера нужно экранированным термостойким проводом.
Реле устанавливаются в любом удобном месте, вне корпуса устройства, защитные диоды шутирующие их обмотки на плате уже установлены.
Естественно это устройство можно установить и в салоне. Тогда оно еще и заменит штатный термометр охлаждающей жидкости.
Устройство управления вентилятором для охлаждения усилителя
В настоящее время выходная мощность усилителей и ресиверов достигает сотен ватт, а число каналов – пяти-семи. Это приводит к значительному выделению тепла выходными каскадами, поэтому все большую популярность приобретает активное охлаждение усилительных устройств. Обдув радиаторов вентиляторами давно стал нормой в профессиональной аппаратуре, однако для бытовой техники он имеет и ряд недостатков:
- повышенный уровень шума в паузах и на малой громкости;
- запыление радиаторов и устройства в целом, что приводит к ухудшению теплоотдачи;
- запыление самого вентилятора ускоряет его износ и снижает срок службы, а отказ вентилятора приводит к выходу усилителя из строя вследствие перегрева.
Поэтому оптимальным представляется следующее решение: пассивного охлаждения должно быть достаточно для работы усилительного устройства на холостом ходе и на небольшой громкости, когда нагрев выходных транзисторов (работающих в классе АВ или В) невысок. При дальнейшем повышении выходной мощности, включается вентилятор. Плюсы тут очевидны: отсутствует лишний шум, уменьшается запыление усилителя, повышается ресурс вентилятора, усилитель не повреждается при отказе вентилятора (при работе на холостом ходу и на небольшой громкости).
Существуют разные способы управления вентилятором системы охлаждения. В промышленных ресиверах вентилятор обычно включается при установке регулятора громкости в положение, близкое к максимуму. В любительской практике находят применение схемы, включающие вентилятор при большом уровне сигнала. По мнению автора, все подобные системы имеют один принципиальный недостаток – информация о нагреве устройства носит косвенный характер. При большом уровне входного сигнала высокая выходная мощность достигается даже при положении регулятора громкости далеком от максимума. А вентилятор при этом не включается. Или другой пример: эксплуатация усилителя в жарком климате, либо установка его в такое место, где затруднена естественная циркуляция воздуха (в нишу) приведет к тому, что он перегреется и при низком уровне выходного сигнала.
Наилучший вариант – использовать датчик температуры, и управлять вентилятором непосредственно от температуры радиатора выходных транзисторов. В этом случае охлаждение производится именно тогда, когда оно необходимо, вне зависимости от причин, вызвавших перегрев. Кроме того, информация о перегреве, снимаемая с датчика температуры, может быть использована для управления системой защитного отключения («спасающей жизнь» усилителю) и соответствующей индикации.
Предлагаемое устройство управления вентилятором охлаждения аппаратуры имеет простую конструкцию, не содержит дефицитных деталей и не требовательно к питанию, обеспечивая при этом интеллектуальное многоступенчатое охлаждение. Принцип его работы иллюстрирует рисунок 1.
При небольшой рассеиваемой мощности напряжение на вентиляторе равно нулю. С ростом мощности температура радиатора растет, и когда она достигает 40 градусов, вентилятор включается. Напряжение на нем составляет 6 вольт, скорость вращения небольшая, и вентилятор не производит шума. Однако эффективность охлаждения заметно возрастает. При мощности порядка 9…12 Вт, эффективность активного охлаждения настолько высока, что через одну-две минуты температура опускается ниже 35 градусов, что вызывает выключение вентилятора. В системе специально предусмотрен гистерезис 5…7 градусов, для того, чтобы снизить частоту включений-выключений вентилятора и диапазон мощностей, когда происходит такое «широтно-импульсное» управление, особенно при неудачном расположении термодатчика. Начиная с мощности 12…15 Вт, вентилятор работает непрерывно (благодаря наличию гистерезиса), при этом температура радиатора оказывается ниже, чем при мощности 8…9 Вт.
Такой «бесшумный» режим работы сохраняется до значения мощности 40 Вт, когда температура радиатора повышается до 50 градусов. При дальнейшем росте рассеиваемой мощности, напряжение на вентиляторе начинает плавно повышаться, и эффективность охлаждения еще больше увеличивается. В результате, в диапазоне мощностей 40…70 Вт температура изменяется от 50 до примерно 53 градусов. Шум работающего вентилятора также возрастает, однако такая ситуация соответствует работе усилителя с большой громкостью, и шум вентилятора не заметен на фоне громкого звука. Причем большинство вентиляторов начинает «громко шуметь» при напряжении питания, превышающем 9 вольт, что соответствует рассеиваемой мощности прядка 60 Вт. При температуре больше 55 градусов напряжение на вентиляторе максимально и охлаждение производится наиболее интенсивно, уровень шума при этом несущественен – речь идет о сохранении работоспособности усилителя.
Пунктирные линии на графике показывают, как изменялась бы температура, если бы не происходило включение следующей ступени охлаждения. Если принять максимально допустимой температурой радиатора значение 60 градусов, то при естественном охлаждении предельная рассеиваемая мощность была бы равна 20 Вт, а при низкоскоростном активном охлаждении – 65 Вт. При непрерывной работе вентилятора можно было бы получить те же самые максимальные 90…95 Вт, но это сопровождалось бы значительным шумом на малой громкости, тогда как в предлагаемом устройстве шум вообще отсутствует до значения мощности примерно 40…50 Вт, и незначителен до 55…60 Вт.
График на рис.1, получен на макете устройства при использовании радиатора площадью 200см2 и вентилятора размером 60х60 мм. Значения температур включения ступеней охлаждения выбраны достаточно произвольно.
Схема устройства приведена на рисунке 2. В качестве термодатчика используется терморезистор с отрицательным ТКС (термистор) R1, который совместно с резистором R2 образует делитель напряжения. Напряжение с делителя – пропорциональное температуре – подается на триггер Шмитта на транзисторах VT1,VT2. При повышении входного напряжения триггер включается, при этом полевой транзистор VT3 (закрытый в исходном состоянии) открывается и подает напряжение на двигатель вентилятора М1. Поскольку последовательно с двигателем включен мощный стабилитрон VD1, напряжение на вентиляторе меньше напряжения питания на величину напряжения стабилизации стабилитрона. Вентилятор работает на малых оборотах. При дальнейшем росте температуры, напряжение делителя также растет, и при некотором его значении открывается транзистор VT4. Этот транзистор шунтирует цепочку VT3-VD1, и напряжение на вентиляторе повышается. Поскольку в качестве VT4 используется «вертикальный» транзистор, то диапазон входных напряжений, при котором VT4 переходит из закрытого состояния в открытое, небольшой и увеличение скорости вращения вентилятора до максимума происходит при небольшом изменении температуры.
Конденсатор С1 форсирует запуск двигателя вентилятора при включении его на пониженном напряжении. Это позволяет надежно запускать вентилятор даже при его износе и запылении, когда момент трения на валу повышен, что повышает надежность системы охлаждения. Конденсатор С2 снижает пульсации напряжения на вентиляторе при регулировании напряжения. Если устройство питается от отдельного самостоятельного источника, то С2 можно исключить.
Подстроечными резисторами R3 и R9 устанавливают пороги срабатывания ступеней охлаждения. Светодиод HL1 – индикатор, причем его яркость сигнализирует о напряжении на вентиляторе, а, следовательно, и о температуре. При желании получить больше информации, узел индикации можно усложнить, применив, например, два светодиода с разным цветом свечения.
Если необходимо контролировать температуру нескольких радиаторов, то можно использовать несколько однотипных термисторов, включенных параллельно (пропорционально уменьшив сопротивление R2). При этом, вследствие нелинейности температурной характеристики, система будет в большей степени реагировать на наиболее горячий объект, что повысит надежность устройства в целом.
Схему можно питать и от источника с меньшим напряжением, но при этом снизится максимальная эффективность охлаждения.
Конструкция и детали.
Биполярные транзисторы – любые маломощные с коэффициентом h21Э не менее 150, например, КТ3102 (я использовал импортные ВС546В). Полевые транзисторы – любые средней мощности. Из отечественных подойдут КП740-КП743. Можно использовать и маломощные КП505А-В, однако ток вентилятора в этом случае не должен превышать 150 мА. Из импортных подойдут практически все транзисторы серий IRF5хх, IRF 6хх. Стабилитрон VD1 должен выдерживать ток вентилятора, который при пониженном напряжении питания составляет 40…50% от номинального (а это порядка 50…150 мА). Напряжение стабилизации выбирается таким образом, чтобы напряжение на двигателе составляло 5…6 вольт (т.е. 6…10 вольт). При более низком напряжении не все вентиляторы устойчиво работают, более высокое напряжение увеличит уровень шума. Если не удастся подобрать подходящий стабилитрон, можно воспользоваться его аналогом (рис.3).
Большое разнообразие термисторов не позволяет указать какой-то конкретный тип. Подойдут практически все в интервале сопротивлений 1…68 кОм. Если сопротивление термистора превышает 20 кОм, то при подборе R2 следует учесть его шунтирование резисторами R3 и R9.
Поскольку основным для усилителя все же является пассивное охлаждение, то следует использовать «конвекционные» (обыкновенные) радиаторы с редкими толстыми ребрами. Вентилятор – корпусной вентилятор подходящего размера от компьютера. Процессорные вентиляторы использовать не рекомендуется, несмотря на их больший воздушный поток – они более шумные. Термистор необходимо установить так, чтобы обеспечивался хороший тепловой контакт с радиатором (с использованием термопасты), и на него не попадал воздушный поток от вентилятора.
Поскольку температура внутри корпуса усилителя может достигать 40…50 градусов, возможна установка дополнительного вентилятора, выдувающего воздух из корпуса. Все вентиляторы включаются параллельно.
Устройство собрано на печатной плате размером 55х30 мм. Добиваться еще большей миниатюрности, используя SMD компоненты, я считаю нецелесообразным – раз используются сравнительно крупногабаритные элементы – радиаторы, то свободное место для устройства управления вентилятором в усилителе найдется. Печатная плата показана на рис. 4 (вид со стороны установки деталей). Красным цветом показан мощный стабилитрон VD1, а светло-зеленым — его аналог на маломощном стабилитроне и транзисторе. Ставится либо одно, либо другое.
Рис. 4.
Синим цветом обозначены изолированные проводники, припаянные со стороны дорожек:
Налаживание устройства необходимо, вследствие большого разнообразия термисторов. Оно сводится к подбору резистора R2 и установки порогов срабатывания резисторами R3, R9. Для этого задаются значениями температур включения ступеней устройства (на рис.1 это 40 и 50 градусов) и определяют сопротивление термистора на этих двух температурах. Проще всего определить сопротивление, поместив термистор в стакан с водой требуемой температуры. Допустим, получились значения R1_1 и R1_2. Резистор R2 должен иметь такое сопротивление, чтобы напряжение делителя при включении первой ступени было порядка 2,5 вольт:
После установки R2 соответствующего номинала, вместо термистора подключают переменный резистор с установленным сопротивлением, равным R1_1 и при помощи R3 добиваются включения вентилятора (настраивается именно момент включения, для отключения вентилятора, вследствие гистерезиса, необходимо отключать «термистор»). Аналогично, при помощи R9 добиваются увеличения напряжения на вентиляторе при подключении вместо термистора сопротивления величиной равной R1_2.
Внимание!
Иногда возникает проблема, вроде этой:
«Первая ступень охлаждения выставляется нормально. Вторая — не настраивается. В крайней точке подстроечного резистора R9 напряжение на вентиляторе достигает лишь 3,3 В (при отключенной первой ступени подстроечником R3).»
Скорее всего, причина в сильном различии параметров термисторов разных типов: у некоторых при увеличении температуры сопротивление падает очень сильно, а у некоторых – не очень сильно. При повышении температуры сопротивление термистора уменьшается, а напряжение в точке соединения R1, R2, R3 растет. Когда напряжение в этой точке достигает порога срабатывания одной из ступеней, ступень срабатывает и включается. Для срабатывания триггера Шмитта требуется примерно 2,5 вольта, а для открывания полевого транзистора VT4 – порядка 4…5 вольт (см. типовую передаточную характеристику транзистора IRF630 на рис. 6). Если сопротивление терморезистора падает не сильно, то напряжение на затворе полевого транзистора не достигает требуемой величины, и он не открывается.
В этом случае настройку надо проводить «наоборот»: подбирать резистор R2 таким, чтобы надежно срабатывала вторая ступень управления. Для этого R3 выводят на минимум (движок в нижнем по схеме положении), а R9 на максимум (движок в верхнем по схеме положении). Вместо термистора подключают резистор с сопротивлением, равным сопротивлению термистора при максимальной температуре и подбирают R2 так, чтобы напряжение на вентиляторе было максимальным — примерно равно напряжению питания (можно контролировать напряжение в точке соединения R1, R2, R3, оно должно быть порядка 4…5 вольт). Значение R2 округляют до ближайшего большего. После этого потенциометром R3 устанавливают требуемый порог срабатывания первой ступени. Учтите, что конденсатор С1 создает небольшую задержку во времени, поэтому давайте напряжению установиться примерно 1…2 секунды.
Хорошо бы перед сборкой схемы посмотреть справочные данные полевого транзистора – он должен открываться (ток стока примерно 100 мА) при напряжении на затворе не менее 3 и не более 6 вольт:
Вот фото прототипа (с транзистором вместо мощного стабилитрона). На самом деле, плату можно и уменьшить. Наверное я когда-нибудь это сделаю…
Рис. 7.
На самом деле систему можно упростить, использовав специализированный датчик температуры и микроконтроллер (либо специализированную микросхему), но ИМХО она станет не такой доступной для широкого круга радиолюбителей.
Самостоятельный ремонт блока управления вентилятором радиатора системы охлаждения Ford Focus 2 Ford Focus
Установленный вентилятор охлаждения радиатора выполняет 2 функции:
1. Охлаждает охлаждающую жидкость в радиаторе системы охлаждения
2. Охлаждает френон в конденсаторе (радиаторе) кондиционера.
Управление этим вентилятором осуществляет ЭБУ двигателя через блок управления вентилятором, расположенный на арматуре вентилятора.
Вентилятор, его арматура и блок управления являются единым узлом. При необходимости замены отдельной его части меняются только в сборе.
Выход из строя блока управления вентилятором влечет за собой перегрев двигателя, а при эксплуатации кондиционера — перегрев фреона, соответственно повышение давления и в итоге повреждение системы кондиционирования. Если первое можно заметить по показаниям температуры на приборной панели, то второе только по косвенным признакам, например, недостаточное охлаждение воздуха.
Хотя конструкция блока не подразумевает ремонтопригодность, тем не менее, отремонтировать его можно.
Слабым местом являются два полевых транзистора IRF477 (маркировка на корпусе IRF477N).
Это полевые N-канальные транзисторы с напряжением 450В и током 8,8А. При ремонте были заменяются на IRF640 (в связи с отсутствием 477-ых в продаже).
Выход из строя транзистора может повлечь за собой повреждение микросхемы TL494 (это ШИМ-контроллер, широко применяющийся в разнообразной технике, например, в компьютерных блоках питания). Она же может иметь и другую маркировку в зависимости от производителя. Например KA7500, BL7500, MB3759 и отечественный аналог К1114УЕ4.
Для замены транзисторов (без замены микросхемы) потребуется удалить часть мастики. Сделать это будет проще, если его нагреть, например, феном паяльной станции. Далее открутить гайки, крепящие транзисторы, предварительно просверлив два отверстия в нижней стенке корпуса, через которые удерживать винты отверткой. Иначе гайки буду проворачиваться вместе с винтами.
Выпаиваем сгоревшие транзисторы и аккуратно впаиваем новые, соблюдая все правила пайки полевух транзисторов.
Установить новые транзисторы на штатные места невозможно из-за повреждений платы. Поэтому для вновь установленных транзисторов в корпус врезается другой радиатор.
После, место ремонта заливается герметиком
Для проверки после ремонта без автомобиля можно собрать имитатор (например, на таймер NE555), хотя достаточно замкнуть сиреневый провод на минус, предварительно подав питание на блок. После подачи питания на блок вентилятор не должен вращаться, при замыкании управляющего провода на минус должен вращаться на средних оборотах. Собрав имитатор, можно регулировать скорость вращения во всем диапазоне.
Подключение электровентилятора через реле: особенности и схемы
Настало лето, жаркая погода. Многие едут на дачу, путешествуют на машинах, часами стоя в пробках. Из-за жары электровентилятор легко может сгореть перегревшись. В такие дни данное устройство просто необходимо, чтобы радиатор с двигателем обдувались. Включается оно только в тот момент, когда происходит блокировка муфты. Но чтобы не ждать, когда это время наступит, можно сделать кнопку с принудительным включением, а как подключить вентилятор охлаждения в своей машине — узнаете ниже!
Схема подключения вентилятора радиатора
Датчик включения двигателя ставится на радиатор, имеющий у себя внизу небольшую пластину. От температуры она начинает нагреваться, двигая красный стержень, соединяющий контакты вместе. Один из контактов всегда соединяется с кузовом, уже через него скрепляясь с минусовой клеммой аккумулятора. Минус подается на электромагнит реле.
На другой контакт идет плюс при включении зажигания. Электромагнит притягивает к себе железку, соединяющую вместе контакты (30, 87) и на электровентилятор через предохранитель от генератора идет плюс, что заставляет всю конструкцию работать.
Электросхема вентилятора охлаждения происходит по следующему описанию:
- Напряжение подается на электрический двигатель вентилятора охлаждения.
- Далее, данный двигатель подключается к датчику включения этого устройства и коммутируется на массу.
- При достижении температуры срабатывания, датчик замыкается — через цепь течет ток.
- Вентилятор начинает работать!
Когда температура снижается у двигателя — датчик, соответственно, размыкается, ток прекращает течь, электровентилятор останавливается: происходит отключение системы.
Обратите внимание, что схема подключения вентилятора охлаждения через реле отличается тем, что весь заряд идет на массу. При его замыкании ток течет через первичную обмотку, контакты 87, 30 замыкаются — I начинает течь в цепи электродвигателя. При понижении температуры происходит обратный процесс.
Первичная обмотка подключается к плюсу 12 В на катушку зажигания. Провод тянется к 86 выводу реле. С 85 тянется на датчик вентилятора. С датчика включения провод приходится на массу. Получается минимум проводов, а реле находится в непосредственной близости от датчика включения.
Варианты схем
Схема включения вентилятора охлаждения с помощью реле зависит только от правильного соединения плюса с минусом, соответственно, проводов!
Как работает реле
Электровентилятор со временем начинает потреблять большое количество электроэнергии, в отличие от нового. Пусковые токи могут просто испортить выключатель температуры.
Основная задача реле — коммутация высоко токовых цепей с помощью низко токового управляющего сигнала.
Типичное реле представляет собой катушку на сердечнике, являющуюся электромагнитом и группу контактов, замыкающихся или размыкающихся между собой. Катушка срабатывает при очень низких значениях тока в несколько миллиампер. Пропускаемые контакты дают пройти через себя большие токи.
Обозначается реле на схеме буквой К с числовым индексом, показывая его порядковый номер и при помощи 2-х блоков: первый — электромагнит, второй — группа контактов.
Характеризуется оно следующими параметрами: напряжение, ток, при которых срабатывает реле, а также U, ток комутации: какую величину I он сможет пропускать по своим контактам. Превышать U нельзя — может возникнуть напряжение контактов, последующее их прилипание друг к другу.
Подключение вентилятора охлаждения через реле
Имеется электровентилятор, от него отходят 2 провода. Один ведет к термодатчику, другой — к реле. Дополнительно можно подключить лампочку контроля работы Карлсона через 87 контакт для лучшей визуализации, диагностики.
На крышке вы увидите обычную схему 4-х контактного реле, с помощью которого можно понять какие контакты являются электромагнитами:
- 30;
- 80;
- 87;
- 85.
По схеме подключения электровентилятора через реле 30 и 85 пускают на аккумулятор. На датчик вентилятора идут только минусовые провода. Если вы кинете к нему плюсовой — он у вас постоянно будет перегорать. На 2 минусовых провода подключается кнопка, чтобы замыкать цепь.
При разрыве тока на реле электровентилятора возникает искра, поэтому стали делать модели со встроенным диодом.
87 идет на фишку вентилятора, 80 — на датчик охлаждения. Плюсовой провод подцепляете сразу к вентилятору, кидая на массу.
Совет: 2 провода, отходящих от вентилятора лучше всего спаять (скрутить, заизолировать). Это нужно для того, те не повредеились, т.к. здесь могут проходить большие нагрузки, сам разъем находится в моторном отсеке, где присутствует влага, контакты окисляться, поэтому лучше перестрахуйтесь!
Для отдельного использования реле используется кнопка, фиксирующаяся при включении, она будет давать минус на 86 контакт, замыкая его. Протягивается она на рулевую колонку через магнитолу (можно попробовать спицей), в итоге получается принудительное включение вентилятора. Синий провод идет на массу, коричневый — на управляющие контакты.
Причины неисправности вентилятора
Первое, что нужно проверить — уровень тосола в расширительном бочке. При недостаточном уровне его температура может не достигнуть нужной точки, при которой включается датчик. При полной исправленной цепи питания вентилятор включаться не будет.
Если не будет открываться термостат, в него не сможет попасть горячий тосол. Это является причиной, по которой вентилятор неисправно работает.
Проверить, генерирует ли термостат — просто! Нужно прогреть двигатель до рабочей температуры, пощупав нижнюю часть радиатора — они должны быть горячими.
Можно приступать к проверке самого вентилятора и цепей его питания:
- Снимите контакты с датчиков вентилятора.
- Присоедините их друг к другу — вентилятор должен включиться. Если так произойдет — все исправлено.
- Значит не включается вентилятор из-за датчика. Для проверки — нагрейте его до температуры включения (92 градуса) и посмотрите, замыкается ли цепь.
- Посмотрите его предохранители (располагается в монтажном блоке).
- Реле тоже нужно проверить: подключите его к аккумулятору по схеме, нарисованной на нем.
- Если вентилятор все равно не включается — проведите осмотр его самого: подключите напрямую к автомобильной батарее.
- Еще одна причина — сгорание дорожки монтажного блока. Когда она повреждается — появляется запах горелого.
- На инжекторном двигателе проверьте целостность цепи.
Бывает такое, что вентилятор работает постоянно. Связано это с:
- термодатчиком;
- сломанным блоком;
- реле;
- замыканием цепи.